1887

Abstract

Three Gram-stain-negative, aerobic, rod-shaped, non-motile strains (DC2W, DC25W, and LKC2W) were isolated from streams in China. Comparisons based on the 16S rRNA gene sequences showed that these three strains share 16S rRNA gene sequence similarity values over 97.0 % with the species of genus . There was confusion due to the fact that all species of genera , , and show 16S rRNA gene sequence similarity of over 90.0 % to the above three strains, but the genus belongs to the family and the genera and belong to the family . Observing the phylogenetic trees, strains DC2W, DC25W, and LKC2W cluster closely with the species of genus , but some species within the families and are not monophyletic. The phylogenomic tree also showed a confused phylogenetic relationships among these non-monophyletic species. Combining the phylogenetic relationships and average nucleotide identity values, the current taxonomic status of all the genera within the families and were re-examined. The genera ‘’, ‘’, and should belong to the new family fam. nov., the genera , , , , and should belong to the new family fam. nov., the genera , , , , , , , and should belong to the new family fam. nov., the genus should be reassigned to the family , and the genera and should be reassigned to the family . Strains DC2W and DC25W are reported to represent two novel species of the genus , for which the names sp. nov. (type strain DC2W=GDMCC 1.3209=KCTC 92559) and sp. nov. (type strain DC25W=GDMCC 1.3210=KCTC 92557) are proposed.

Keyword(s): Arcicella and streams
Funding
This study was supported by the:
  • Yunnan Provincial Ministry of Science and Technology (Award 202203AC100002-02, 202305AM070002 and 202301AT070100)
    • Principle Award Recipient: HuibinLu
  • Science and Technology Projects of Southwest Joint Graduate School of Yunnan Province (Award 202302AP370001)
    • Principle Award Recipient: LiChen
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006345
2024-04-17
2024-04-30
Loading full text...

Full text loading...

References

  1. Krieg NR, Ludwig W, Euzéby J, Phylum WWB. Phylum XIV. Bacteroidetes phyl. nov. In Krieg NR. eds Bergey’s Manual of Systematic Bacteriology New York: Springer; 2010 [View Article]
    [Google Scholar]
  2. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article] [PubMed]
    [Google Scholar]
  3. Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016; 4:36 [View Article] [PubMed]
    [Google Scholar]
  4. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016; 7:2003 [View Article] [PubMed]
    [Google Scholar]
  5. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  7. Pitt A, Schmidt J, Koll U, Hahn MW. Aquirufa antheringensis gen. nov., sp. nov. and Aquirufa nivalisilvae sp. nov., representing a new genus of widespread freshwater bacteria. Int J Syst Evol Microbiol 2019; 69:2739–2749 [View Article]
    [Google Scholar]
  8. Nikitin DI, Strömpl C, Oranskaya MS, Abraham W-R. Phylogeny of the ring-forming bacterium Arcicella aquatica gen. nov., sp. nov. (ex Nikitin et al. 1994), from a freshwater neuston biofilm. Int J Syst Evol Microbiol 2004; 54:681–684 [View Article] [PubMed]
    [Google Scholar]
  9. Chen WM, Yang SH, Young CC, Sheu SY. Arcicella rigui sp. nov., isolated from water of a wetland, and emended descriptions of the genus Arcicella, Arcicella aquatica, Arcicella rosea and Arcicella aurantiaca. Int J Syst Evol Microbiol 2013; 63:134–140 [View Article] [PubMed]
    [Google Scholar]
  10. Kämpfer P, Lodders N, Busse H-J. Arcicella rosea sp. nov., isolated from tap water. Int J Syst Evol Microbiol 2009; 59:341–344 [View Article] [PubMed]
    [Google Scholar]
  11. Sheu S-Y, Yang C-S, Chen M-H, Arun AB, Young C-C et al. Arcicella aurantiaca sp. nov., isolated from stream water. Int J Syst Evol Microbiol 2010; 60:2979–2983 [View Article] [PubMed]
    [Google Scholar]
  12. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Sequencing Techniques in Bacterial Systematics New York, USA: Wiley; 1991 pp 115–175
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  18. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1 [View Article]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  25. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  27. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  28. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  29. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  30. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2019; 47:D590–D595 [View Article]
    [Google Scholar]
  31. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  32. Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 2018; 9:771 [View Article] [PubMed]
    [Google Scholar]
  33. Biswas BB, Basu PS, Pal MK. Gram staining and its molcecular mechanism. Int Rev Cytol 1970; 29:1–27 [View Article] [PubMed]
    [Google Scholar]
  34. Lu HB, Xing P, Phurbu D, Tang Q, Wu QL. Pelagibacterium montanilacus sp. nov., an alkaliphilic bacterium isolated from Lake Cuochuolong on the Tibetan Plateau. Int J Syst Evol Microbiol 2018; 68:2220–2225 [View Article] [PubMed]
    [Google Scholar]
  35. Zhu XF. Modern Experimental Technique of Microbiology Hangzhou, China: Zhejiang University Press; 2011
    [Google Scholar]
  36. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  37. Szuróczki S, Khayer B, Spröer C, Toumi M, Szabó A et al. Arundinibacter roseus gen. nov., sp. nov., a new member of the family Cytophagaceae. Int J Syst Evol Microbiol 2019; 69:2076–2081 [View Article] [PubMed]
    [Google Scholar]
  38. Choi J, Yang D, Chhetri G, Cha S, Seo T. Tellurirhabdus rosea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from soil in South Korea. Antonie van Leeuwenhoek 2019; 112:1047–1054 [View Article] [PubMed]
    [Google Scholar]
  39. Maejima Y, Iino T, Muraguchi Y, Fukuda K, Ohkuma M et al. Chryseotalea sanaruensis gen. nov., sp., nov., a member of the family Cytophagaceae, Isolated from a brackish lake in Hamamatsu Japan. Curr Microbiol 2020; 77:306–312 [View Article] [PubMed]
    [Google Scholar]
  40. Chen WM, Cai CY, Sheu SY. Sandaracinomonas limnophila gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from a freshwater mesocosm. Int J Syst Evol Microbiol 2020; 70:2178–2185 [View Article] [PubMed]
    [Google Scholar]
  41. Octaviana S, Lorenczyk S, Ackert F, Fenske L, Wink J. Four new members of the family Cytophagaceae: Chryseosolibacter histidini gen. nov., sp. nov., Chryseosolibacter indicus gen. nov., sp. nov., Dawidia cretensis, gen. nov., sp. nov., and Dawidia soli, gen. nov., sp. nov. isolated from diverse habitat. Antonie van Leeuwenhoek 2022; 115:1059–1072 [View Article] [PubMed]
    [Google Scholar]
  42. Zhang D-F, Yao Y-F, Xue H-P, Fu Z-Y, Zhang X-M et al. Characterization of Marinilongibacter aquaticus gen. nov., sp. nov., a unique marine bacterium harboring four CRISPR-Cas systems in the phylum Bacteroidota. J Microbiol 2022; 60:905–915 [View Article] [PubMed]
    [Google Scholar]
  43. Larkin JM, Williams PM, Taylor R. Taxonomy of the genus Microcyclus Orskov 1928: reintroduction and emendation of the genus Spirosoma Migula 1894 and proposal of a new genus, Flectobacillus. Int J Syst Bacteriol 1977; 27:147–156 [View Article]
    [Google Scholar]
  44. Weon H-Y, Kim B-Y, Kwon S-W, Park I-C, Cha I-B et al. Leadbetterella byssophila gen. nov., sp. nov., isolated from cotton-waste composts for the cultivation of oyster mushroom. Int J Syst Evol Microbiol 2005; 55:2297–2302 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006345
Loading
/content/journal/ijsem/10.1099/ijsem.0.006345
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error