1887

Abstract

A polyphasic taxonomic study was carried out on strain ES2, isolated from sediment of a wetland created to remediate acid drainage from a coal mine. The rod-shaped bacterium formed yellow/orange pigmented colonies and produced the pigment flexirubin. The 16S rRNA gene sequence results assigned the strain to , with 98.9 and 98.3 % similarity to and , respectively. Computation of the average nucleotide identity and digital DNA–DNA hybridization values with the closest phylogenetic neighbours of ES2 revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids of strain ES2 were iso-C, iso-C ω9, iso C 3-OH, and iso-C 2-OH. The DNA G+C content was 35.5 mol%. The major polar lipid was phosphatidylethanolamine while menaquinone-6 was the only menaquinone found. This bacterium has been previously shown to possess metallophore activity towards rare earth elements, and based on genome sequencing, possesses all required genes for siderophore production/activity, possibly identifying the source of this unique ability. On the basis of the results obtained here, this bacterium is assigned to the genus as representing a new species with the name sp. nov., type strain ES2 (=NRRL B-65679=KCTC 102120).

Funding
This study was supported by the:
  • Slippery Rock University Faculty Student Research Grant
    • Principle Award Recipient: ChrisMaltman
  • Department of Biology, Slippery Rock University
    • Principle Award Recipient: ChrisMaltman
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006337
2024-04-11
2024-04-30
Loading full text...

Full text loading...

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. NOTES: new perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Bacteriol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  3. Mwanza EP, Hugo A, Charimba G, Hugo CJ. Pathogenic potential and control of Chryseobacterium species from clinical, fish, food and environmental sources. Microorganisms 2022; 10:895 [View Article] [PubMed]
    [Google Scholar]
  4. Zhang L, Wang Y, Kong D, Ma Q, Li Y et al. Chryseobacterium herbae isolated from the rhizospheric soil of Pyrola calliantha H. Andres in Segrila Mountain on the Tibetan Plateau. Microorganisms 2023; 11:2017 [View Article] [PubMed]
    [Google Scholar]
  5. Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A et al. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek 2013; 104:321–330 [View Article] [PubMed]
    [Google Scholar]
  6. Rehm K, Vollenweider V, Gu S, Friman V-P, Kümmerli R et al. Chryseochelins-structural characterization of novel citrate-based siderophores produced by plant protecting Chryseobacterium spp. Metallomics 2023; 15:mfad008 [View Article] [PubMed]
    [Google Scholar]
  7. Kutsuna R, Mashima I, Miyoshi-Akiyama T, Muramatsu Y, Tomida J et al. Chryseobacterium lecithinasegens sp. nov., a siderophore-producing bacterium isolated from soil at the bottom of a pond. Int J Syst Evol Microbiol 2021; 71:005135 [View Article] [PubMed]
    [Google Scholar]
  8. Choudhury R, Srivastava S. Zinc resistance mechanisms in bacteria. Curr Sci 2001; 81:768–775
    [Google Scholar]
  9. Nongkhlaw M, Joshi SR. Molecular insight into the expression of metal transporter genes in Chryseobacterium sp. PMSZPI isolated from uranium deposit. PLoS One 2019; 14:e0216995 [View Article] [PubMed]
    [Google Scholar]
  10. Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WDC. Metallophores and trace metal biogeochemistry. Aquat Geochem 2015; 21:159–195 [View Article]
    [Google Scholar]
  11. Ahmed E, Holmström SJM. Siderophores in environmental research: roles and applications. Microb Biotechnol 2014; 7:196–208 [View Article] [PubMed]
    [Google Scholar]
  12. Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy?. Sci Total Environ 2022; 819:153144 [View Article] [PubMed]
    [Google Scholar]
  13. Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M. Trends in bioremediation of heavy metal contaminations. Environ Eng Res 2023; 28:220631–0 [View Article]
    [Google Scholar]
  14. Skeba S, Snyder M, Maltman C. Metallophore activity toward the rare earth elements by bacteria isolated from acid mine drainage due to coal mining. Microorganisms 2023; 11:2672 [View Article] [PubMed]
    [Google Scholar]
  15. Kuzyk SB, Hughes E, Yurkov V. Discovery of siderophore and metallophore production in the aerobic anoxygenic phototrophs. Microorganisms 2021; 9:959 [View Article] [PubMed]
    [Google Scholar]
  16. Daumann LJ. A natural lanthanide-binding protein facilitates separation and recovery of rare earth elements. ACS Cent Sci 2021; 7:1780–1782 [View Article] [PubMed]
    [Google Scholar]
  17. Datashed Slippery rock elementary wetland; 1995 www.datashed.org/index.php/project-slippery-rock-elementary-wetland accessed 16 January 2024
  18. Li Z, Zhu H. Chryseobacterium vietnamense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2012; 62:827–831 [View Article] [PubMed]
    [Google Scholar]
  19. Park SC, Kim MS, Baik KS, Kim EM, Rhee MS et al. Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008; 58:607–611 [View Article] [PubMed]
    [Google Scholar]
  20. Jeong J-J, Lee DW, Park B, Sang MK, Choi I-G et al. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. Int J Syst Evol Microbiol 2017; 67:610–616 [View Article] [PubMed]
    [Google Scholar]
  21. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. NOTES: new perspectives in the classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  22. Lee J-E, Yoon S-H, Lee G-Y, Lee D-H, Huh C-S et al. Chryseobacterium vaccae sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 2020; 70:4859–4866 [View Article]
    [Google Scholar]
  23. Venil CK, Nordin N, Zakaria ZA, Ahmad WA. Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 2014; 64:3153–3159 [View Article] [PubMed]
    [Google Scholar]
  24. Zhou Y, Dong J, Wang X, Huang X, Zhang K-Y et al. Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 2007; 57:1765–1769 [View Article] [PubMed]
    [Google Scholar]
  25. Kämpfer P, Chandel K, Prasad GBKS, Shouche YS, Veer V. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus. Int J Syst Evol Microbiol 2010; 60:2387–2391 [View Article]
    [Google Scholar]
  26. Zamora L, Vela AI, Palacios MA, Sánchez-Porro C, Moore ERB et al. Chryseobacterium tructae sp. nov., isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 2012; 35:315–319 [View Article] [PubMed]
    [Google Scholar]
  27. Jordan EO, Caldwell ME, Reiter D. Bacterial motility. J Bacteriol 1934; 27:165–174 [View Article] [PubMed]
    [Google Scholar]
  28. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [PubMed]
    [Google Scholar]
  29. Holt JG, Krieg NR, Sneath PHA. Bergey’s Manual of Determinative Bacterology Baltimore, MD, USA: The Williams and Wilkins Co; 1994
    [Google Scholar]
  30. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc: MIDI Technical Note 101; 1990
    [Google Scholar]
  32. Husmann H, Schomburg G, Müller K, Nalik HP, von Recklinghausen G. Gas chromatographic FAME analysis for characterization of bacteria: formation of aldehydes from 3‐hydroxy fatty acid methyl esters during sample introduction. J High Resol Chromatogr 1990; 13:780–782 [View Article]
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Chen WP, Kuo TT. A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Res 1993; 21:2260 [View Article] [PubMed]
    [Google Scholar]
  35. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  36. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article]
    [Google Scholar]
  39. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  40. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  41. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  42. Grimm D, Guy N, Lengyel G, Franks J, Maltman C. Gordonia metallireducens sp. nov., a tellurite- and selenite-resistant bacterium isolated from the sediment of an acid mine drainage stream. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  43. Bernardet J-F, Hugo C, Bruun B. The genera Chryseobacterium and Elizabethkingia. In The Prokaryotes: A Handbook on the Biology of Bacteria vol 7 Springer; 2006 pp 638–676 [View Article]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  45. Hugo C, Bernardet J-F, Nicholson A, Kampfer P. Chryseobacterium. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. eds Bergey’s Manual of Systematics of Archaea and Bacteria Wiley; 2019 https://doi.org/10.1002/9781118960608.gbm00301.pub2
    [Google Scholar]
  46. Holden VI, Bachman MA. Diverging roles of bacterial siderophores during infection. Metallomics 2015; 7:986–995 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006337
Loading
/content/journal/ijsem/10.1099/ijsem.0.006337
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error