1887

Abstract

Antimicrobial resistance (AMR) in is a pressing public health challenge with significant implications for the dairy industry, encompassing bovine mastitis concerns and potential zoonotic threats. To delve deeper into the resistance mechanisms of , this study employed a hybrid whole genome assembly approach that synergized the precision of Illumina with the continuity of Oxford Nanopore. A total of 62 isolates, collected from multiple sources from Vermont dairy farms, were sequenced using the GridION Oxford Nanopore R9.4.1 platform and the Illumina platform, and subsequently processed through our long-read first bioinformatics pipeline.

Our analyses showcased the hybrid-assembled genome’s superior completeness compared to Oxford Nanopore (R9.4.1)-only or Illumina-only assembled genomes. Furthermore, the hybrid assembly accurately determined multilocus sequence typing (MLST) strain types across all isolates. The comprehensive probe for antibiotic resistance genes (ARGs) using databases like CARD, Resfinder, and MEGARES 2.0 characterized AMR in isolates from Vermont dairy farms, and revealed the presence of notable resistance genes, including beta-lactam genes , , and . In conclusion, the hybrid assembly approach emerged as a tool for uncovering the genomic nuances of isolates collected from multiple sources on dairy farms. Our findings offer a pathway for detecting AMR gene prevalence and shaping AMR management strategies crucial for safeguarding human and animal health.

Funding
This study was supported by the:
  • National Institute of Food and Agriculture (Award VT-2023-AH01)
    • Principle Award Recipient: JohnBarlow
  • National Institute of Food and Agriculture (Award VT-AH02703)
    • Principle Award Recipient: JohnBarlow
  • National Institute of Food and Agriculture (Award VT-H02413MS)
    • Principle Award Recipient: JohnBarlow
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000766.v3
2024-03-25
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/acmi/6/3/acmi000766.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.000766.v3&mimeType=html&fmt=ahah

References

  1. Nemati G, Romanó A, Wahl F, Berger T, Rojo LV et al. Bovine Staphylococcus aureus: a European study of contagiousness and antimicrobial resistance. Front Vet Sci 2023; 10:1154550 [View Article] [PubMed]
    [Google Scholar]
  2. Matuszewska M, Murray GGR, Harrison EM, Holmes MA, Weinert LA. The evolutionary genomics of host specificity in Staphylococcus aureus. Trends Microbiol 2020; 28:465–477 [View Article] [PubMed]
    [Google Scholar]
  3. Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 2000; 38:1008–1015 [View Article] [PubMed]
    [Google Scholar]
  4. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 1999; 37:3556–3563 [View Article] [PubMed]
    [Google Scholar]
  5. O’Hara FP, Suaya JA, Ray GT, Baxter R, Brown ML et al. spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microb Drug Resist 2016; 22:88–96 [View Article] [PubMed]
    [Google Scholar]
  6. Driebe EM, Sahl JW, Roe C, Bowers JR, Schupp JM et al. Using whole genome analysis to examine recombination across diverse sequence types of Staphylococcus aureus. PLoS One 2015; 10:e0130955 [View Article] [PubMed]
    [Google Scholar]
  7. Dendani Chadi Z, Dib L, Zeroual F, Benakhla A. Usefulness of molecular typing methods for epidemiological and evolutionary studies of Staphylococcus aureus isolated from bovine intramammary infections. Saudi J Biol Sci 2022; 29:103338 [View Article] [PubMed]
    [Google Scholar]
  8. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483-19 [View Article] [PubMed]
    [Google Scholar]
  9. Köser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 2012; 8:e1002824 [View Article] [PubMed]
    [Google Scholar]
  10. Karp BE, Tate H, Plumblee JR, Dessai U, Whichard JM et al. National antimicrobial resistance monitoring system: two decades of advancing Public Health through integrated surveillance of antimicrobial resistance. Foodborne Pathog Dis 2017; 14:545–557 [View Article] [PubMed]
    [Google Scholar]
  11. Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: one Health approach. Vet World 2022; 15:743–749 [View Article] [PubMed]
    [Google Scholar]
  12. Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int J Mol Sci 2022; 23:8088 [View Article] [PubMed]
    [Google Scholar]
  13. Haaber J, Penadés JR, Ingmer H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 2017; 25:893–905 [View Article] [PubMed]
    [Google Scholar]
  14. Park S, Ronholm J. Staphylococcus aureus in agriculture: lessons in evolution from a multispecies pathogen. Clin Microbiol Rev 2021; 34:1–27 [View Article] [PubMed]
    [Google Scholar]
  15. Weinert LA, Welch JJ, Suchard MA, Lemey P, Rambaut A et al. Molecular dating of human-to-bovid host jumps by Staphylococcus aureus reveals an association with the spread of domestication. Biol Lett 2012; 8:829–832 [View Article] [PubMed]
    [Google Scholar]
  16. Forde BM, De Oliveira DMP, Falconer C, Graves B, Harris PNA. Strengths and caveats of identifying resistance genes from whole genome sequencing data. Expert Rev Anti Infect Ther 2022; 20:533–547 [View Article] [PubMed]
    [Google Scholar]
  17. Khezri A, Avershina E, Ahmad R. Hybrid assembly provides improved resolution of plasmids, antimicrobial resistance genes, and virulence factors in Escherichia coli and Klebsiella pneumoniae clinical isolates. Microorganisms 2021; 9:2560 [View Article] [PubMed]
    [Google Scholar]
  18. Brown CL, Keenum IM, Dai D, Zhang L, Vikesland PJ et al. Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes. Sci Rep 2021; 11:1–12 [View Article]
    [Google Scholar]
  19. Chen Z, Erickson DL, Meng J. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genomics 2020; 21:631 [View Article] [PubMed]
    [Google Scholar]
  20. Chen Z, Erickson DL, Meng J. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses. Genomics 2021; 113:1366–1377 [View Article]
    [Google Scholar]
  21. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol 2020; 21:30 [View Article] [PubMed]
    [Google Scholar]
  22. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 2015; 3:1–8 [View Article] [PubMed]
    [Google Scholar]
  23. De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics 2023; 39:btad311 [View Article] [PubMed]
    [Google Scholar]
  24. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  25. Wick RR. Rebaler. n.d https://github.com/rrwick/Rebaler
  26. Wright C, Wykes M. Medaka; 2017 https://github.com/nanoporetech/medaka
  27. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 https://github.com/s-andrews/FastQC
  28. Krueger F. TrimGalore; 2017 https://github.com/FelixKrueger/TrimGalore
  29. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  31. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:1–4 [View Article] [PubMed]
    [Google Scholar]
  32. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  33. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  34. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  36. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  37. Seemann T. GitHub - tseemann/mlst: Scan contig files against PubMLST typing schemes; 2019 https://github.com/tseemann/mlst
  38. Bartels MD, Petersen A, Worning P, Nielsen JB, Larner-Svensson H et al. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2014; 52:4305–4308 [View Article] [PubMed]
    [Google Scholar]
  39. Seeman T. GitHub - tseemann/abricate::mag_right: mass screening of contigs for antimicrobial and virulence genes. GitHub; 2020 https://github.com/tseemann/abricate accessed 26 August 2022
  40. Verhoeven PO, Gagnaire J, Botelho-Nevers E, Grattard F, Carricajo A et al. Detection and clinical relevance of Staphylococcus aureus nasal carriage: an update. Expert Rev Anti Infect Ther 2014; 12:75–89 [View Article] [PubMed]
    [Google Scholar]
  41. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  42. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  43. Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 2020; 48:D561–D569 [View Article] [PubMed]
    [Google Scholar]
  44. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58:212–220 [View Article]
    [Google Scholar]
  45. CLSI Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 4th ed Wayne, PA: Clinical and Laboratory Standards Institute: CLSI supplement VET08; 2018
    [Google Scholar]
  46. Wick RR, Judd LM, Holt KE. Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing. PLoS Comput Biol 2023; 19:e1010905 [View Article] [PubMed]
    [Google Scholar]
  47. Neal-McKinney JM, Liu KC, Lock CM, Wu W-H, Hu J. Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni. Sci Rep 2021; 11:5676 [View Article] [PubMed]
    [Google Scholar]
  48. Chen Z, Kuang D, Xu X, González-Escalona N, Erickson DL et al. Genomic analyses of multidrug-resistant Salmonella Indiana, Typhimurium, and Enteritidis isolates using MinION and MiSeq sequencing technologies. PLoS One 2020; 15:e0235641 [View Article]
    [Google Scholar]
  49. Van der Veken D, Hollanders C, Verce M, Michiels C, Ballet S et al. Genome-based characterization of a plasmid-associated micrococcin P1 biosynthetic gene cluster and virulence factors in mammaliicoccus sciuri IMDO-S72. Appl Environ Microbiol 2022; 88:e0208821 [View Article] [PubMed]
    [Google Scholar]
  50. Tan S, Dvorak CMT, Estrada AA, Gebhart C, Marthaler DG et al. MinION sequencing of Streptococcus suis allows for functional characterization of bacteria by multilocus sequence typing and antimicrobial resistance profiling. J Microbiol Methods 2020; 169:105817 [View Article] [PubMed]
    [Google Scholar]
  51. Delahaye C, Nicolas J. Sequencing DNA with nanopores: troubles and biases. PLoS One 2021; 16:e0257521 [View Article] [PubMed]
    [Google Scholar]
  52. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. GPB 2016; 14:265–279 [View Article] [PubMed]
    [Google Scholar]
  53. Sundermann AJ, Rangachar Srinivasa V, Mills EG, Griffith MP, Waggle KD et al. Two artificial tears outbreak-associated cases of extensively drug-resistant Pseudomonas aeruginosa detected through whole genome sequencing-based surveillance. J Infect Dis 2024; 229:517–521 [View Article] [PubMed]
    [Google Scholar]
  54. Raabe NJ, Valek AL, Griffith MP, Mills E, Waggle K et al. Genomic epidemiologic investigation of a multispecies hospital outbreak of NDM-5-producing Enterobacterales infections. medRxiv 20232023.08.31.23294545 [View Article] [PubMed]
    [Google Scholar]
  55. Majumder S, Sackey T, Viau C, Park S, Xia J et al. Genomic and phenotypic profiling of Staphylococcus aureus isolates from bovine mastitis for antibiotic resistance and intestinal infectivity. BMC Microbiol 2023; 23:43 [View Article] [PubMed]
    [Google Scholar]
  56. Laurence Yehouenou C, Bogaerts B, Vanneste K, De Keersmaecker SCJ, Roosens NHC et al. Whole-genome sequencing-based screening of MRSA in patients and healthcare workers in Public hospitals in Benin. Microorganisms 2023; 11:1954 [View Article]
    [Google Scholar]
  57. Bruce SA, Smith JT, Mydosh JL, Ball J, Needle DB et al. Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts. Sci Rep 2022; 12:4413 [View Article] [PubMed]
    [Google Scholar]
  58. Leijon M, Atkins E, Persson Waller K, Artursson K. Longitudinal study of Staphylococcus aureus genotypes isolated from bovine clinical mastitis. J Dairy Sci 2021; 104:11945–11954 [View Article] [PubMed]
    [Google Scholar]
  59. Nurjadi D, Zizmann E, Chanthalangsy Q, Heeg K, Boutin S. Integrative analysis of whole genome sequencing and phenotypic resistance toward prediction of trimethoprim-sulfamethoxazole resistance in Staphylococcus aureus. Front Microbiol 2020; 11:607842 [View Article] [PubMed]
    [Google Scholar]
  60. Juraschek K, Borowiak M, Tausch SH, Malorny B, Käsbohrer A et al. Outcome of different sequencing and assembly approaches on the detection of plasmids and localization of antimicrobial resistance genes in commensal Escherichia coli. Microorganisms 2021; 9:598 [View Article]
    [Google Scholar]
  61. Ruan Z, Wu J, Chen H, Draz MS, Xu J et al. Hybrid genome assembly and annotation of a pandrug-resistant Klebsiella pneumoniae strain using Nanopore and illumina sequencing. Infect Drug Resist 2020; 13:199–206 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000766.v3
Loading
/content/journal/acmi/10.1099/acmi.0.000766.v3
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error